Divisibility in Integers

Dr. Amol Sonawane

Assistant Professor
Department of Mathematics
Government College of Arts and Science
Aurangabad

Divisibility

Definition:

Let a and b be integers with $a \neq 0$.

The integer a divides the integer b, if there exists an integer q such that b=aq.

Also, we say that b is divisible by a. It is denoted by $a \mid b$.

E.g.

- $2 | 6 (:: 6 = 2 \cdot 3)$

Note: If there does not exist an integer q such that b = aq, then we say that a does not divide b. E.g. $2 \nmid 3$ Note: Let a be an integer. Then

Note: Let a and b be integers with $a \neq 0$. Then

- - By definition of divisibility, $a \mid -b$.

If $a \mid b$ and $b \mid c$, then prove that $a \mid c$.

Proof. $a \mid b \implies b = aq$ for some $q \in \mathbb{Z}$. Similarly, $b \mid c \implies c = br$ for some $r \in \mathbb{Z}$. We can write, c = (aq)r = a(qr). $\implies c = as$, where $s = qr \in \mathbb{Z}$. Hence $a \mid c$. If $a \mid b$ and $a \mid c$, then prove that $a \mid (b + c)$.

Proof. $a \mid b \implies b = aq$ for some $q \in \mathbb{Z}$. Similarly, $a \mid c \implies c = ar$ for some $r \in \mathbb{Z}$. We can write, b + c = aq + ar = a(q + r). $\implies b + c = as$, where $s = q + r \in \mathbb{Z}$. Hence $a \mid (b + c)$.

Exercise: Prove that

- If $a \mid b$ and $a \mid c$, then $a \mid (b c)$.
- If $a \mid b$ and $a \mid c$, then $a \mid (bx + cy)$ for any $x, y \in \mathbb{Z}$.
- If $a \mid b$ and $c \mid d$, then $ac \mid bd$.

Thank You!